If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.268213321x^2+3x-62=0
a = 1.268213321; b = 3; c = -62;
Δ = b2-4ac
Δ = 32-4·1.268213321·(-62)
Δ = 323.516903608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{323.516903608}}{2*1.268213321}=\frac{-3-\sqrt{323.516903608}}{2.536426642} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{323.516903608}}{2*1.268213321}=\frac{-3+\sqrt{323.516903608}}{2.536426642} $
| 8n-20=20+12n | | X+(130-x)+50=180 | | -1.268213321x^2+3x-62=0 | | 13-(3k-5)=4(3k+2) | | 17w=16w-18 | | -14.19-5t=-3.9t+6.82 | | x+100+50=360 | | 3x-63x=13 | | 6x+3-2x-2=8(2x+14) | | 6x+3-2x-2=8(x+6) | | 4x-16=7x+15 | | 6x+3-2x-2=4(2x+4) | | 5.8v=15+7.8v | | –12k+10k=1 | | −4x−11=−4x+21 | | -19g+1=-3g-17g+20 | | –12k+10k+–9=1 | | 11-x/20=-15 | | 19q+20=4q-10 | | 4.61+18.5d=5.1d-3.43 | | (16x+4)+(14x+6)=130 | | 6z-3-8z=18 | | 18p+8=12p-4+7p | | -4t+1=3t+1-7t-1 | | 12t^2+12t+35=0 | | 6=3p+30 | | x-4+7x=4 | | -17=7r+7-r | | 4-3t=2t | | -8(8m+7)=-248 | | -4v=-8/9 | | -4v=-(8/9) |